Skip to main content

AI Studio Workspace

What will you build?

Push Gemini to the limits of what AI can do

Unit Testing

Add unit tests for a Python function.

Recipe List

List recipes in JSON format.

Bake to JSON

Image to recipe in JSON.

This experimental model is for feedback and testing only.

Prompt Editor

0 tokens |

Unit Testing Results

Testing Python function output

Test Case #1: Basic Input Validation

Passed
Input: validate_input("test_string")
Expected: True
Actual: True
Time: 0.003s

Test Case #2: Edge Case Handling

Failed
Input: validate_input("")
Expected: False
Actual: TypeError
Time: 0.002s

Error: TypeError: Expected string input, received empty string

Test Case #3: Performance Test

Warning
Input: validate_input("large_input_string" * 1000)
Expected: True
Actual: True
Time: 1.234s

Warning: Execution time exceeded threshold (1.0s)

Total Tests
3
Passed
1
Failed
1
Warnings
1

API Reference

Complete documentation for the Gemini API

GET /api/v1/generate

Generate AI Response

Generate an AI response based on the provided prompt and parameters.

Parameters
{
  "prompt": "string",
  "max_tokens": "integer",
  "temperature": "float",
  "top_p": "float"
}
Response
{
  "id": "string",
  "created": "timestamp",
  "text": "string",
  "tokens_used": "integer"
}
POST /api/v1/train

Train Custom Model

Train a custom model using provided dataset and parameters.

Request Body
{
  "dataset_url": "string",
  "model_name": "string",
  "epochs": "integer",
  "batch_size": "integer"
}
Response
{
  "model_id": "string",
  "status": "string",
  "training_time": "integer",
  "metrics": {
    "accuracy": "float",
    "loss": "float"
  }
}

Error Codes

400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
429 Too Many Requests
500 Server Error

Settings

Manage your account and application preferences

Account Settings

API Configuration

Appearance

Notifications

Receive updates about your account

Get notified about completed tasks

Danger Zone

Delete Account

Permanently delete your account and all data

Documentation

Learn how to build with Gemini AI

Getting Started

Learn the basics and set up your first project with Gemini AI.

Learn more →

Tutorials

Step-by-step guides to build practical applications.

View tutorials →

API Reference

Complete API documentation and code examples.

View reference →

Examples

Browse example projects and implementations.

View examples →

Best Practices

Guidelines and recommendations for optimal usage.

Learn more →

Community

Join the community and get help from other developers.

Join community →