AI Studio Workspace
AI Studio
Library
U
user@example.com
Free Plan
What will you build?
Push Gemini to the limits of what AI can do
Unit Testing
Add unit tests for a Python function.
Recipe List
List recipes in JSON format.
Bake to JSON
Image to recipe in JSON.
This experimental model is for feedback and testing only.
Prompt Editor
0 tokens
|
Unit Testing Results
Testing Python function output
Test Case #1: Basic Input Validation
Input: validate_input("test_string")
Expected: True
Actual: True
Time: 0.003s
Test Case #2: Edge Case Handling
Input: validate_input("")
Expected: False
Actual: TypeError
Time: 0.002s
Error: TypeError: Expected string input, received empty string
Test Case #3: Performance Test
Input: validate_input("large_input_string" * 1000)
Expected: True
Actual: True
Time: 1.234s
Warning: Execution time exceeded threshold (1.0s)
Total Tests
3
Passed
1
Failed
1
Warnings
1
API Reference
Complete documentation for the Gemini API
GET
/api/v1/generate
Generate AI Response
Generate an AI response based on the provided prompt and parameters.
Parameters
{
"prompt": "string",
"max_tokens": "integer",
"temperature": "float",
"top_p": "float"
}
Response
{
"id": "string",
"created": "timestamp",
"text": "string",
"tokens_used": "integer"
}
POST
/api/v1/train
Train Custom Model
Train a custom model using provided dataset and parameters.
Request Body
{
"dataset_url": "string",
"model_name": "string",
"epochs": "integer",
"batch_size": "integer"
}
Response
{
"model_id": "string",
"status": "string",
"training_time": "integer",
"metrics": {
"accuracy": "float",
"loss": "float"
}
}
Error Codes
400
Bad Request
401
Unauthorized
403
Forbidden
404
Not Found
429
Too Many Requests
500
Server Error
Settings
Manage your account and application preferences
Account Settings
API Configuration
Appearance
Notifications
Receive updates about your account
Get notified about completed tasks
Danger Zone
Delete Account
Permanently delete your account and all data
Documentation
Learn how to build with Gemini AI